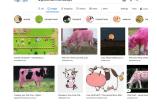
2nd Workshop on Federated Learning for Computer Vision @ CVPR '23 Monday, 19th June 2023 – Vancouver, Canada and *virtually (on zoom)...*

Machine Learning and the Data Center: A Dangerous Dead End

Nicholas D. Lane University of Cambridge | Flower Labs @niclane7

Machine Learning and Data Centers



Born gentle

ROUD mothers, please forgive us if we too feel something of the pride of a new parent. For new Philip Morris, today's Philip Morris, is delighting smokers everywhere. Enjoy the gentle pleasure, the fresh unfiltered flavor, of this new cigarette, born gentle, then refined to special gentleness in the making.

a hundred years old!"

· It's a fact-a warm and wonderful factthat this five-year-old child, or your town child, has a life expectancy almost a whole decade longer than was her mother's, and ing craselessly, often with little or no a good 18 to 20 years longer than that of recognition ... that you and yours m her grandmother. Not only the expectation joy a longer, better life.

of a longer life, but of a life by far hea Thank medical science for that." your doctor and thousands like him.

According to a recent Nationwide survey:

More Doctors smoke Camels than any other cigarette!

NOT ONE but these outstanding independent research organ-izations conducted this survey. And they asked not just a few thousand, but 113,597, doctors from coast to coast to name the eigarette they themselves preferred to smoke,

The answers came in by the thousands ... from general physicians, diagnosticians, surgeous-yes, and nose and throat specialists too. The most-named brand was CameL

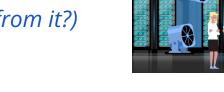
If you are not now smoking Camels, try them. Compare them critically. See how the full, rich flavor of Camel's costfact tobaccos suits your taste. See how the cool mildness of a Camel suits your

King Stor

Regular

THE "T-ZONE" TEST WILL TELL YOU

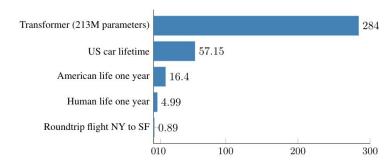
- Reliance on static tiny biased datasets
- Centralization of control
- Energy and carbon footprint
- Safety: Brittleness of systems
- Energy and latency of data to model
- User privacy and control
- Increasing local ML compute



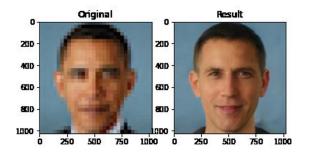
- Reliance on static tiny biased datasets
- Centralization of control
- Energy and carbon footprint
- Safety: Brittleness of systems
- Energy and latency of data to model
- User privacy and control
- Increasing local ML compute

- Reliance on static tiny biased datasets
- Centralization of control
- Energy and carbon footprint
- Safety: Brittleness of systems
- Energy and latency of data to model
- User privacy and control
- Increasing local ML compute

Model	Hardware	Power (W)	Hours	kWh-PUE	CO ₂ e	Cloud compute cost
Transformer _{base}	P100x8	1415.78	12	27	26	\$41-\$140
Transformer _{big}	P100x8	1515.43	84	201	192	\$289-\$981
ELMo	P100x3	517.66	336	275	262	\$433-\$1472
BERTbase	V100x64	12,041.51	79	1507	1438	\$3751-\$12,571
BERTbase	TPUv2x16		96		_	\$2074-\$6912
NAS	P100x8	1515.43	274,120	656,347	626,155	\$942,973-\$3,201,722
NAS	TPUv2x1	_	32,623	_	_	\$44,055-\$146,848
GPT-2	TPUv3x32	_	168	—	—	\$12,902-\$43,008

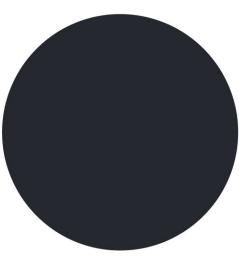


- Reliance on static tiny biased datasets
- Centralization of control
- Energy and carbon footprint
- Safety: Brittleness of systems
- Energy and latency of data to model
- User privacy and control
- Increasing local ML compute



CaMLSys http://mlsys.cst.cam.ac.uk

Reliance on static tiny biased datasets



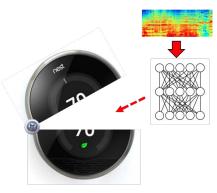
Used Data

Public & centralized

Unused Data Sensitive & distributed

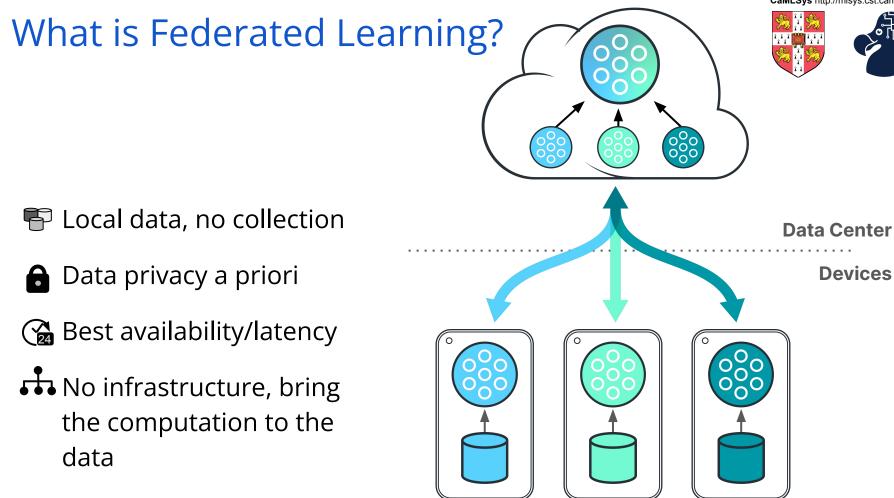
- *(classic)* On-Device ML
- Federated Learning
- Alternative Emerging Learning Paradigms:
 - Self-supervised Local Learning
 - "Zero-Shot" Hybrid Solutions
 - Variations of Foundations Models

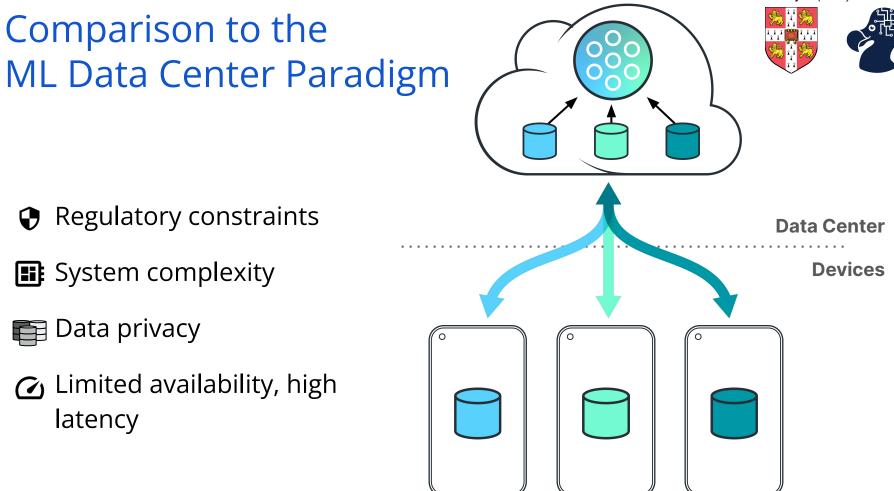
- (classic) On-Device ML
- Federated Learning
- Alternative Emerging Learning Paradigms:
 - Self-supervised Local Learning
 - "Zero-Shot" Hybrid Solutions
 - Variations of Foundations Models

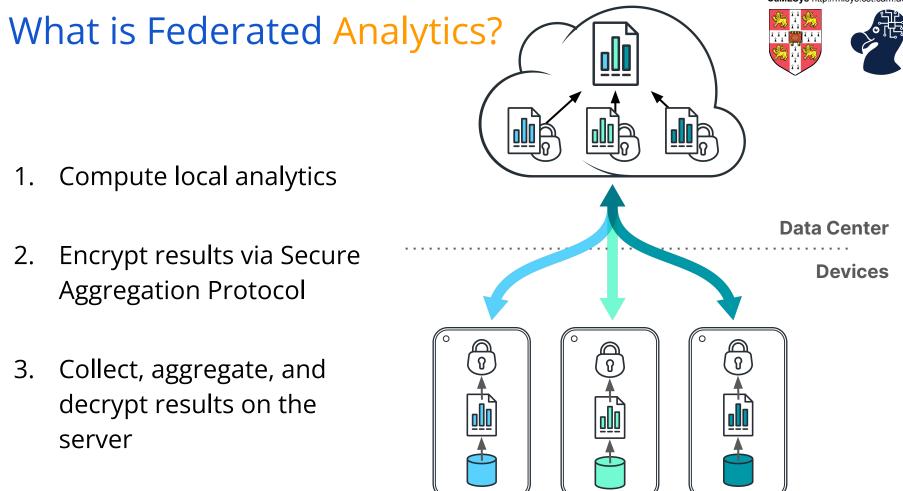


- *(classic)* On-Device ML
- Federated Learning
- Alternative Emerging Learning Paradigms:
 - Self-supervised Local Learning
 - "Zero-Shot" Hybrid Solutions
 - Variations of Foundations Models

- *(classic)* On-Device ML
- Federated Learning
- Alternative Emerging Learning Paradigms:
 - Self-supervised Local Learning
 - "Zero-Shot" Hybrid Solutions
 - Variations of Foundations Models

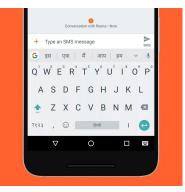






Federated Examples (Exciting, but niche)

Navigation and Perception of Robots



Learning user keyboard behaviors and word selection

Sharing of Sensitive Data between Organizations

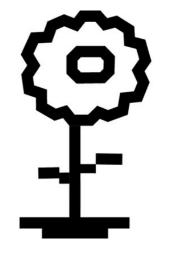
Personalization of Speech Recognition

- Dependency and availability of labels/supervision
- Inefficiency of communication
- Heavy local compute/memory
- Coping with heterogeneity (clients/devices)
- Challenges of non-I.I.D data (i.e., data heterogeneity)
- Breadth of ML tasks at acceptable accuracy
- Primitive MLOps and tuning capabilities
- Gaps in theoretical understanding and/or empirical best-practices

- Dependency and availability of labels/supervision
- Inefficiency of communication
- Heavy local compute/memory
- Coping with heterogeneity (clients/devices)
- Challenges of non-I.I.D data (i.e., data heterogeneity)
- Breadth of ML tasks at acceptable accuracy
- Primitive MLOps and tuning capabilities
- Gaps in theoretical understanding and/or empirical best-practices

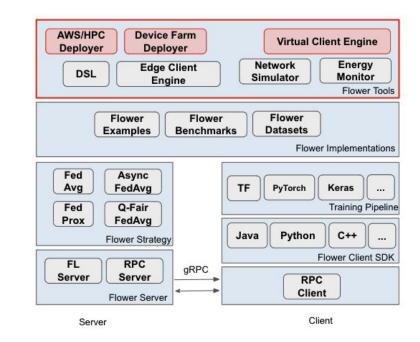
- Dependency and availability of labels/supervision
- Inefficiency of communication
- Heavy local compute/memory
- Coping with heterogeneity (clients/devices)
- Challenges of non-I.I.D data (i.e., data heterogeneity)
- Breadth of ML tasks at acceptable accuracy
- Primitive MLOps and tuning capabilities
- Gaps in theoretical understanding and/or empirical best-practices

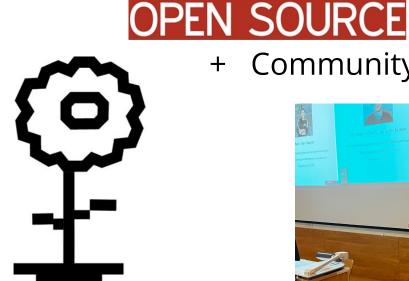
- Dependency and availability of labels/supervision
- Inefficiency of communication
- Heavy local compute/memory
- Coping with heterogeneity (clients/devices)
- Challenges of non-I.I.D data (i.e., data heterogeneity)
- Breadth of ML tasks at acceptable accuracy
- Primitive MLOps and tuning capabilities
- Gaps in theoretical understanding and/or empirical best-practices



Flower
http://flower.dev

http://arxiv.org/abs/2007.14390 http://arxiv.org/abs/2104.03042 http://arxiv.org/abs/2205.06117

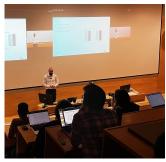




Flower http://flower.dev

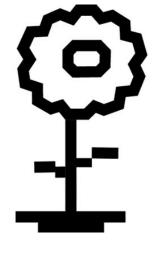
- 2.6k GitHub stars
- 34k+ monthly downloads

+ Community Driven



Flower Summit 2023

Summer of Reproducibility \$100,000 USD; kicking off: July 1st!



Flower http://flower.dev

Daniel Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Yan Gao Javier Fernandez-Marques, Titouan Parcollet, Lorenzo Sani Pedro Porto Buarque de Gusmão, Nicholas D. Lane

Fed Learning needs to get *Real...*

// Number of FL clients = N. Rounds = R

avg_weights = RANDOM_WEIGHTS

For{round in 1...R} {

```
client_weights = []
```

For{client in $C_1, C_2, \ldots C_N$ } {

w = local_optimize(avg_weights)

```
client weights.append(w)
```

avg_weights = federated_averaging(client_weights)

- Networking and Wireless
- Compute Heterogeneity
- Memory Constraints
- Energy Overheads
- Scaling FL Clients

Fed Learning needs to get *Real...*

// Number of FL clients = N. Rounds = R

avg weights = RANDOM WEIGHTS

For{round in 1...R} {

```
client_weights = []
```

For{client in $C_1, C_2, \ldots C_N$ } {

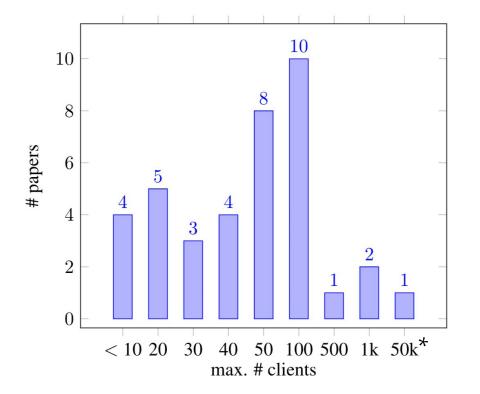
w = local_optimize(avg_weights)

```
client_weights.append(w)
```

avg_weights = federated_averaging(client_weights)

- Networking and Wireless
- Compute Heterogeneity
- Memory Constraints
- Energy Overheads
- Scaling FL Clients

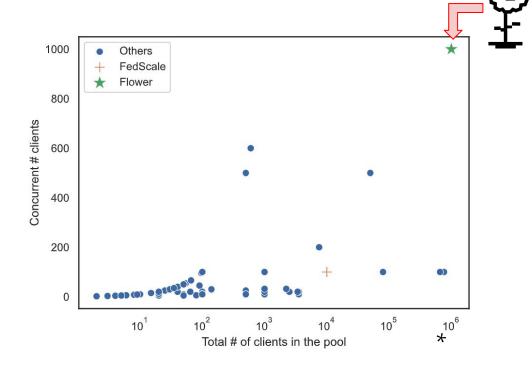
Fed Learning needs to get *Real...*



- Networking and Wireless
- Compute Heterogeneity
- Memory Constraints
- Energy Overheads
- Scaling FL Clients

* Including Simulations and "For-loop" FL Clients

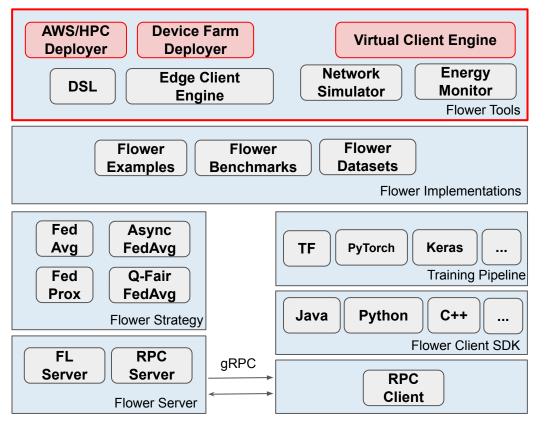
Open Source Scaling of Fed Learning



- Networking and Wireless
- Compute and Memory Heterogeneity
- Non-toy Fully-baked
 Federated Data
- Scaling FL Clients

* Including Simulations and "For-loop" FL Clients

What is Flower?



- Networking and Wireless
- Compute Heterogeneity
- Memory Constraints
- Energy Overheads
 - Scaling FL Clients

http://flower.dev

Server

The Power of Flower (more later...)

import flwr as fl

.

fl.app.server.start_server()

Only one line to start flower...

•••

import flwr as fl

Implement your own strategy
class MySotaStrategy(fl.Strategy):
 ...

Start server w/ custom strategy
strategy = MySotaStrategy(...)
fl.app.server.start_server(strategy)

Implement your own FL strategy

• • •

import flwr as fl

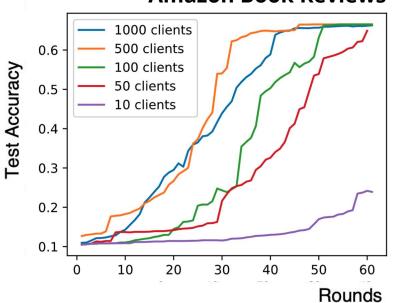
class MyClient(fl.KerasClient): def __init__(self, model, ds_train, val) self.model = model self.ds_train = ds_train self.ds_val = ds_val

- def get_parameters():
 return model.get_weights()
- def fit(self, weights, config): model.set_weights(weights) model.fit(ds_train, epochs=config["epochs"]) return model.get_weights()
- def evaluate(self, weights, config):
 model.set_weights(weights)
 return model.evaluate(ds_test)

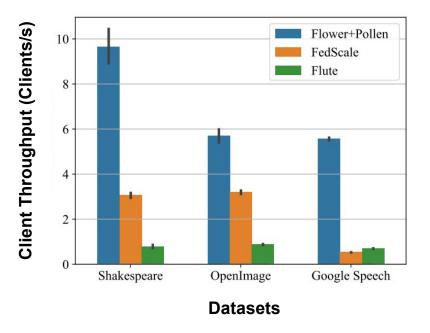
server_address, model, ds_train, ds_test = ...
client = MyClient(model, ds_train, ds_test)
fl.app.client.start_client(server_address, client)

1

Integrate with existing training code



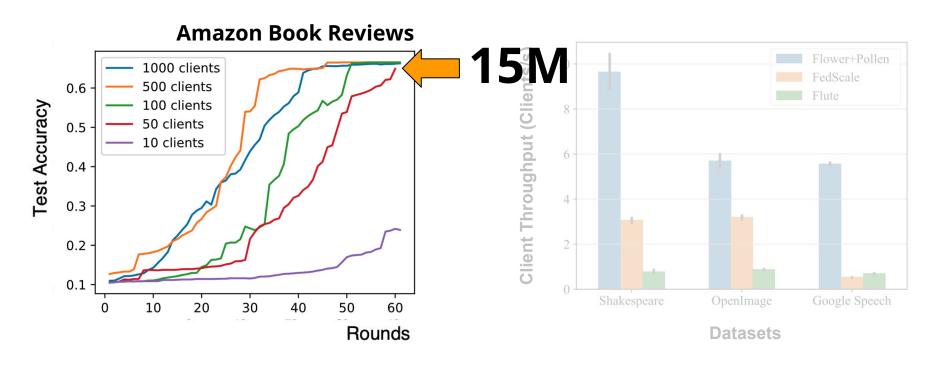
Amazon Book Reviews



Architecture: DistilBERT

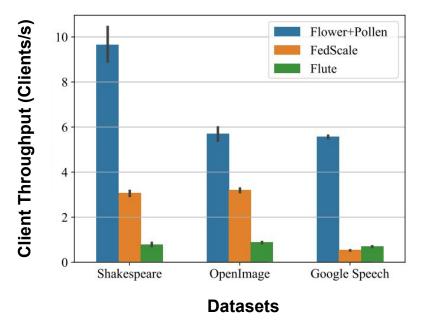
Architectures: { ShuffleNetV2, ResNet 34, 2-cell LSTM }

Extreme Scalability and Training Speed Comparisons



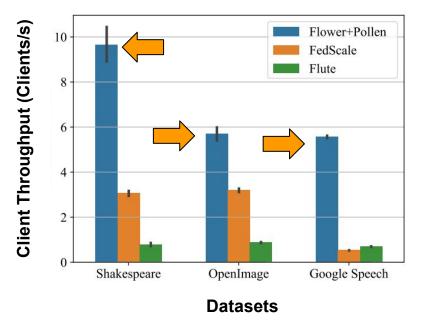
Architecture: DistilBERT

Architectures: { ShuffleNetV2, ResNet 34, 2-cell LSTM }



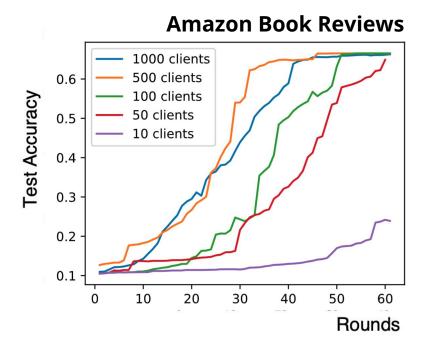
Architectures: { ShuffleNetV2, ResNet 34, 2-cell LSTM }

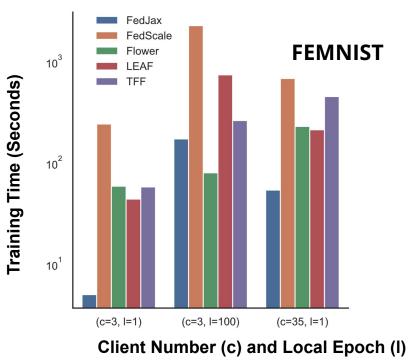
Architecture: DistilBERT



Architectures: { ShuffleNetV2, ResNet 34, 2-cell LSTM }

Architecture: DistilBERT

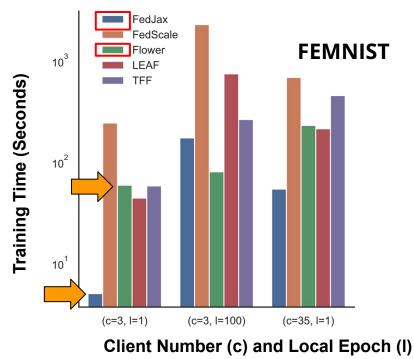




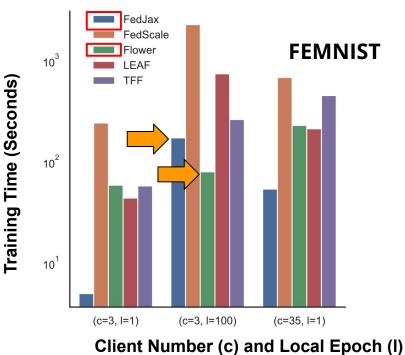
Architecture: DistilBERT

Architecture: ResNet 18

CaMLSys http://mlsys.cst.cam.ac.uk



Architecture: DistilBERT

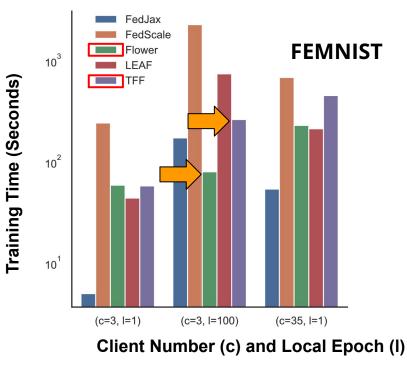


Architecture: DistilBERT

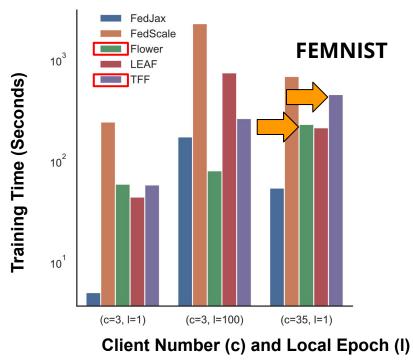
Architecture: ResNet 18

CaMLSys http://mlsys.cst.cam.ac.uk

CaMLSys http://mlsys.cst.cam.ac.uk

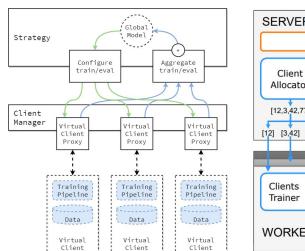


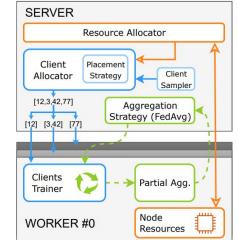
Architecture: DistilBERT



Architecture: DistilBERT

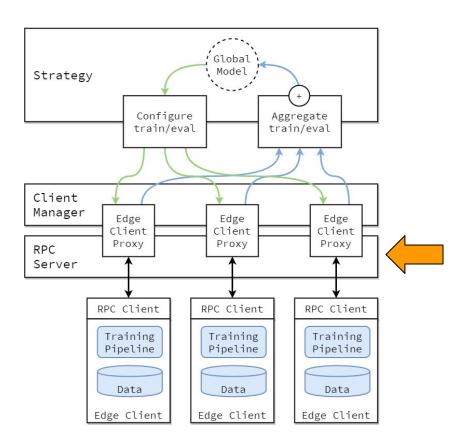
Virtual Client Engine (VCE) + Pollen





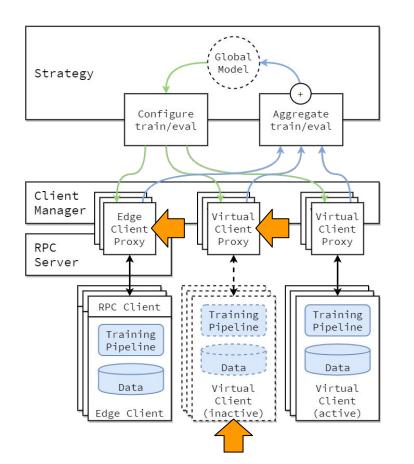
- Clients virtual or devices
- ClientProxy creates clients lazily when they need to perform work
- Resource-aware scheduling w/ latency prediction
- Use case: single-machine or HPC cluster simulation

Edge Client Engine (ECE)



- Clients run in separate processes, potentially on different machines
- Client/server communication over gRPC
- Use case: systems research, production deployment

Mixed Execution: VCE + ECE



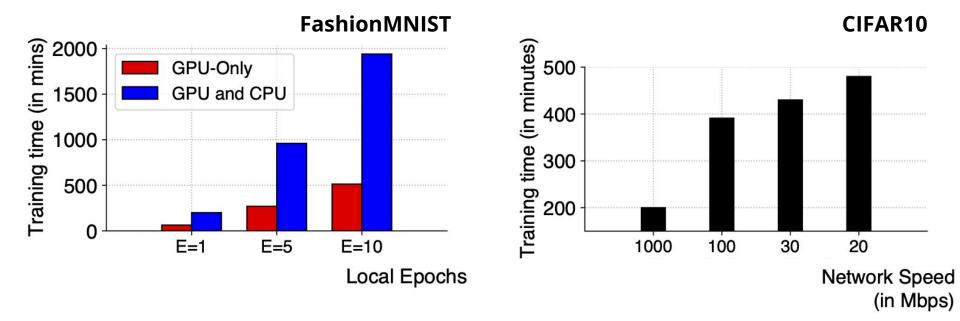
- Mixed execution with both virtual and edge clients
- Virtual clients can be active or inactive

The Power of Flower (...continued)

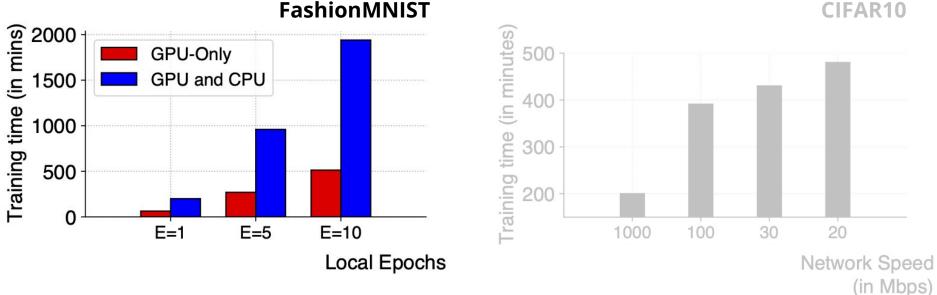
- Instantly deploying 1,000++/15M++ client experiments
 - AWS instances / HPC Nodes
 - AWS device farm / Physical devices
- Sensitivity analysis of system resources
 - o {network, wireless, compute, memory}
- Systematic repeatable comparisons of FL algorithm comparisons
- Launching a functioning FL system

Baseline(instances=[...], server=ServerConfig(instance name="server", strategy="fedavg", model="resnet50", rounds=10, sample fraction=0.1, training round timeout=3600, . . .), clients=configure clients(instance names=..., num clients=10, **Flower DSL Example** . . .),

Increases in FL training time under compute & network heterogeneity



Increases in FL training time under compute & network heterogeneity



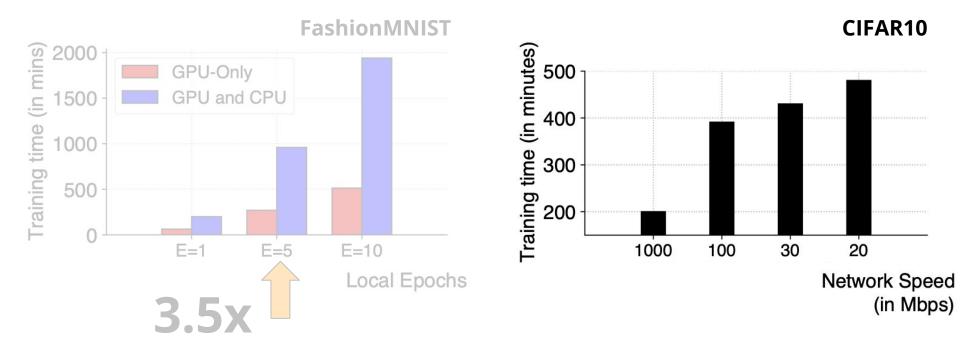
FashionMNIST

Increases in FL training time under compute & network heterogeneity

CIFAR10 2000 Training time (in mins) (in minutes **GPU-Only** 500 GPU and CPU 500 400 1000 **Fraining time** 300 500 200 0 E=1 E=5 E=10 100 30 20 1000 Local Epochs **Network Speed 3.5x** (in Mbps)

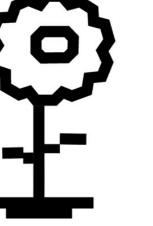
FashionMNIST

Increases in FL training time under compute & network heterogeneity

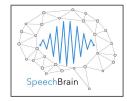


Increases in FL training time under compute & network heterogeneity

Samsung Al Cambridge



Flower http://flower.dev



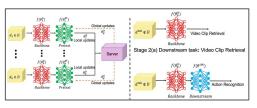
co2

Case Study Carbon Footprint

Case Study

Speech

Recognition

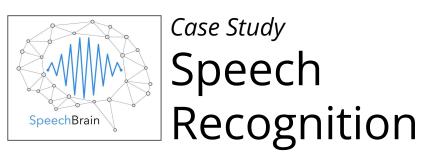


^{Case Study} Self-Supervised Learning

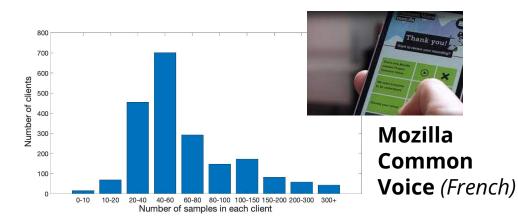
ICASSP 2022

End-to-End Speech Recognition from Federated Acoustic Models

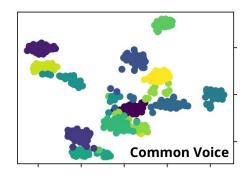
http://arxiv.org/abs/2104.14297



Common Voice as an acoustic dataset with **true** federated properties

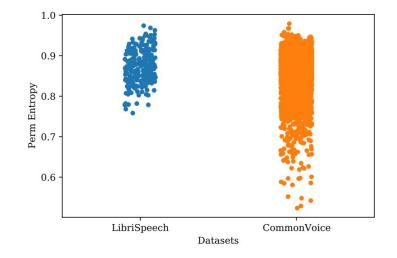


LibriSpeech

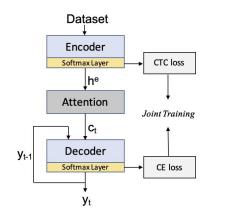


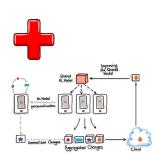
Set-up

- Training: 4,190 speakers (425.5 hours)
- Test: 4,247 speakers
- Warm-up Model: 117 speakers



Real-world Federated Acoustic Modeling



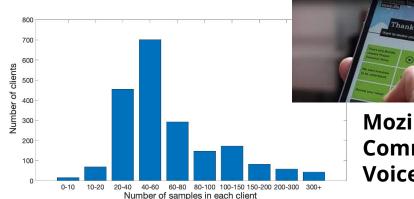


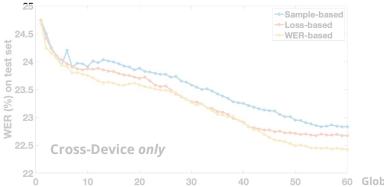
- Model Arch: Seq2Seq attention w/ CTC loss
- WER-based weighting strategy

$$\alpha_T^{(k)} = \frac{\exp\left(1 - wer_k\right)}{\sum_{k=1}^{K} \exp\left(1 - wer_k\right)}$$

- Warm-up Model: Centralized training as init
- .. many "small" tweaks
 - SGD on clients (e.g., Adadelta worse)
 - \circ $\,$ LR annealing based on WER validation $\,$
 - *Older* FedAvg centralized (e.g., FedAdam worse)

Promising Federated WER under Silo and Device settings





Mozilla Common **Voice** (French)

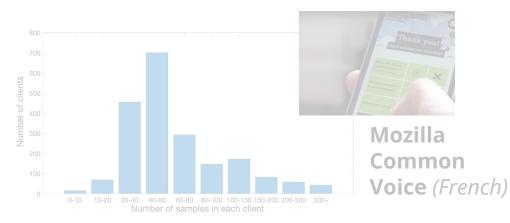
Set-up

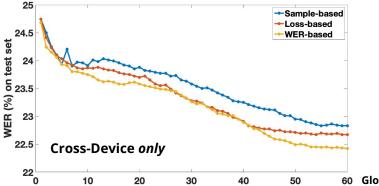
- Training: 4,190 speakers (425.5 hours)
- Test: 4,247 speakers
- Warm-up Model: 117 speakers

	WER (%)
Purely Centralized	20.18
FL Cross-Silo (10-clients)	20.99
Cross-Device (2,000 clients)	22.42

60 Global Training Rounds

Promising Federated WER under Silo and Device settings





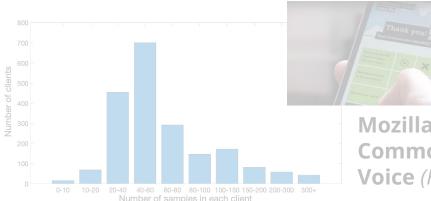
Set-up

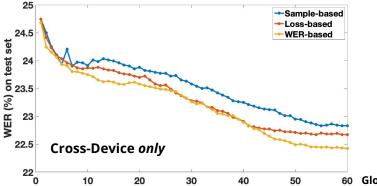
- Training: 4,190 speakers (425.5 hours)
- Test: 4,247 speakers
- Warm-up Model: 117 speakers

	WER (%)
Purely Centralized	20.18
FL Cross-Silo (10-clients)	20.99
Cross-Device (2,000 clients)	22.42

Global Training Rounds

Promising Federated WER under Silo and Device settings





Mozilla Common **Voice** (French)

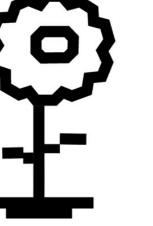
Set-up

- Training: 4,190 speakers (425.5 hours)
- Test: 4,247 speakers
- Warm-up Model: 117 speakers

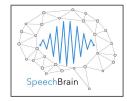
	WER (%)
Purely Centralized	20.18
FL Cross-Silo (10-clients)	20.99
Cross-Device (2,000 clients)	22.42

Global Training Rounds

Samsung Al Cambridge



Flower http://flower.dev



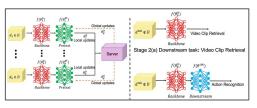
co2

Case Study Carbon Footprint

Case Study

Speech

Recognition



^{Case Study} Self-Supervised Learning *Tackling Climate Change with Machine Learning NeurIPS 2020 Workshop*

http://arxiv.org/abs/2010.06537

JLMR

http://arxiv.org/abs/2102.07627

ML Efficiency is an Environmental Crisis

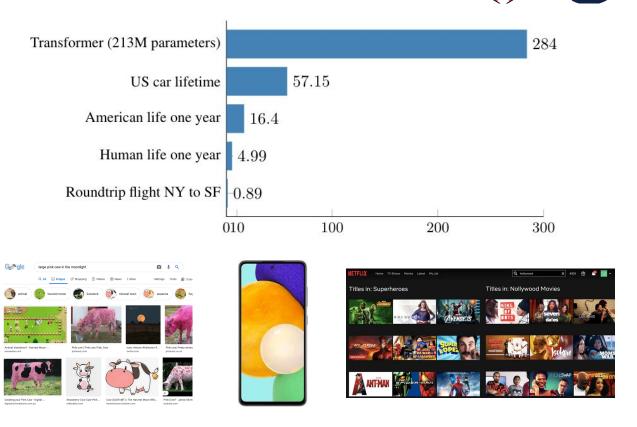
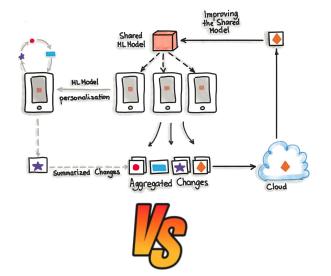
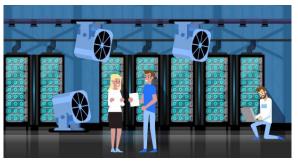


Figure Acknowledgement: "Energy & policy considerations for deep learning in NLP"

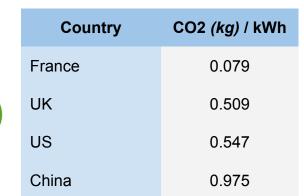
Carbon Potential of Federated Learning



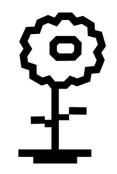


- No need to cool compute
 - Typical data center PUE: 1.60
- No need to move data
 - e.g., 1 memory operation uses 1000x more energy than 1 compute operation
 - (Note: FL faces its own comms overhead)
- No need for redundant ML training
 - Safe reuse of ML across organizations

Carbon Footprint of Fed Learning (*method*)



3 Flower



Data Center Specifications

1

GPU

Cooling

Cooling

Data transfer & storage

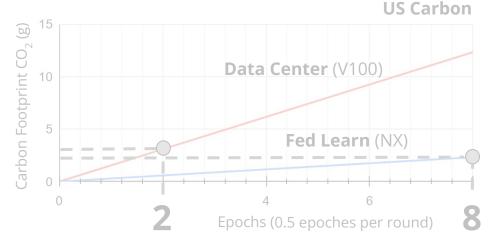
FL Specifications

CPU

Data transfer & storage

Carbon Footprint of Fed Learning *(illustrative result)*

ResNet18 at 60% accuracy V100 FL US 3.08 1.85 China 5.49 3.30 UK 2.86 1.72 CO, (g) Architecture: ResNet Dataset: CIFAR10



Data Center Specifications

- Nvidia V100; 250W
- 1 GPU, 48 sec/epoch (V100)
- PUE: 1.67

FL Specifications

- Nvidia Jetson Xavier-NX; 7.5W
- 20.3 sec/round, 1 local epoch
- 5 clients/round
- 16 rounds to 60%

Carbon Footprint of Fed Learning (illustrative result)

 ResNet18 at 60% accuracy

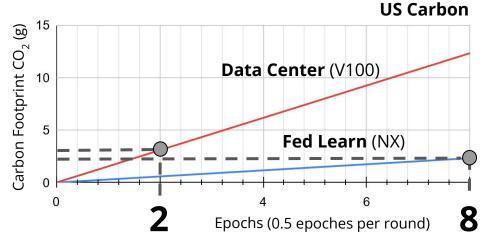
 V100
 FL

 US
 3.08
 1.85

 China
 5.49
 3.30

 UK
 2.86
 1.72

 Architecture: ResNet Dataset: CIFAR10
 Image: Comparison of the second second



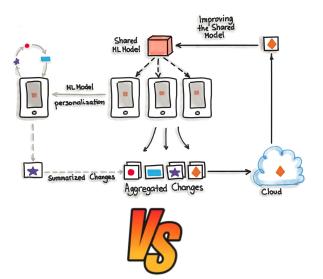
Data Center Specifications

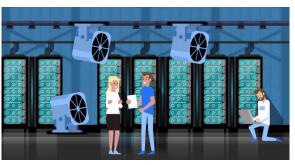
- Nvidia V100; 250W
- 1 GPU, 48 sec/epoch (V100)
- PUE: 1.67

FL Specifications

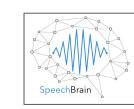
- Nvidia Jetson Xavier-NX; 7.5W
- 20.3 sec/round, 1 local epoch
- 5 clients/round
- 16 rounds to 60%

What role might FL play in sustainable ML?





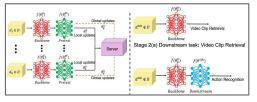
- Selectively replace data centers with FL
 - e.g., speech, vision, hotkey words
- Data center adopting small FL techniques
 - e.g., early-stop centrally, finish w/ FL fine-tuning
- Hybrid data center and FL solutions
 - \circ $\,$ e.g., FL used to share training effort
- Re-inventing everything around FL



Case Study Speech Recognition

Case Study Carbon Footprint

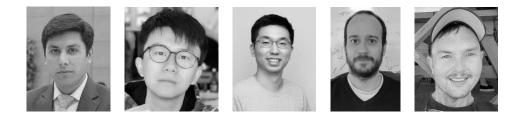
Flower http://flower.dev



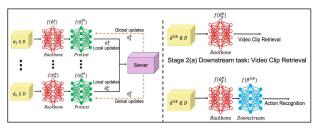
^{Case Study} Self-Supervised Learning

EECV 2022 Federated Self-supervised Learning for Video Understanding

https://arxiv.org/abs/2207.01975



Yasar Abbas Ur Rehman, Yan Gao, Jiajun Shen Pedro Porto Buarque de Gusmão, Nicholas D. Lane



Case Study Self-Supervised Learning

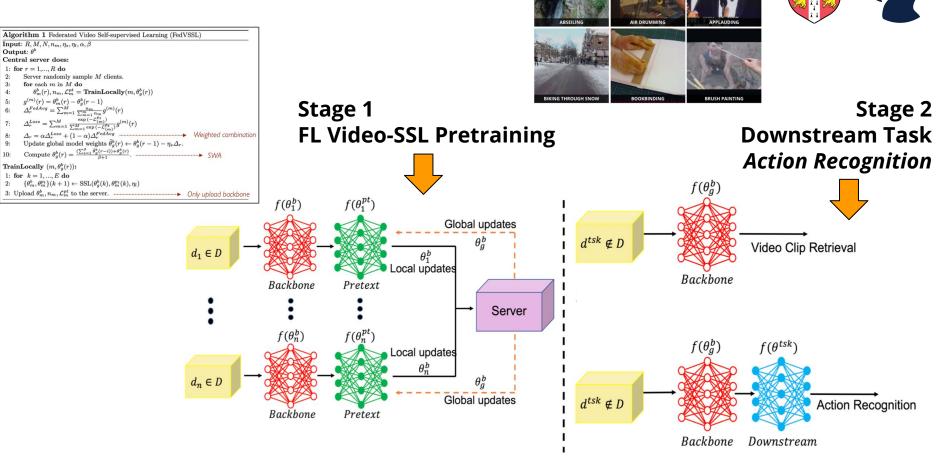
FedVSSL (*method*)

3: 4:

6:

8:

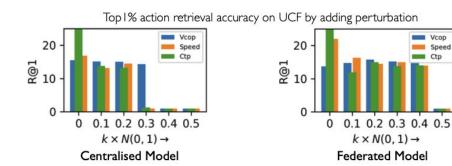
9:



CaMLSys http://mlsys.cst.cam.ac.uk

Federated Model

World's 1st Results: FL+SSL+Video



Set-up

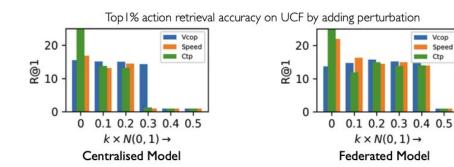
• Model: R3D-18 backbone

Centralised Model

- FL Setup: 100 clients, each client 8 classes
- Pre-training Dataset: Kinetics-400
- Downstream Task: UCF-101 & HMDB-51
 - Video Clip Retrieval & Action Recognition

	Retrieval			Fine-tuning		Linear-probe		
	U	UCF		HMDB		HMD	UCF	HMD
Method	R@1	R@5	R@1	R@5	Top-1	Top-1	Top-1	Top-1
Centralised	29.00	47.30	11.80	30.10	86.20	57.00	48.14	30.65
FedAvg (Baseline)	32.62	50.41	16.54	35.29	79.91	52.88	45.31	31.44
FedVSSL(α=0, β=0)	34.34	51.71	15.82	36.01	79.91	52.94	47.95	31.12
FedVSSL(α=1, β=0)	34.23	52.21	16.73	38.30	79.14	51.11	47.90	29.48
FedVSSL(α=0, β=1)	35.61	52.18	16.93	37.78	79.43	51.90	47.66	30.00
FedVSSL(α=1, β=1)	35.66	52.34	16.41	36.93	78.99	51.18	48.93	31.44
FedVSSL(α=0.9, β=0)	35.50	54.27	16.27	37.25	80.62	53.14	50.36	32.68
FedVSSL(α=0,9, β=1)	35.34	52.34	16.93	37.39	79.41	51.50	50.30	32.42

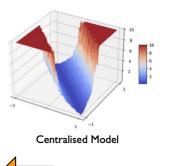
World's 1st Results: FL+SSL+Video

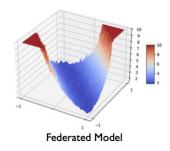


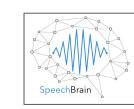
Set-up

- Model: R3D-18 backbone
- FL Setup: 100 clients, each client 8 classes
- Pre-training Dataset: Kinetics-400
- Downstream Task: UCF-101 & HMDB-51
 - Video Clip Retrieval & Action Recognition

	Retrieval			Fine-t	tuning	Linear-probe		
	UCF		HMDB		UCF	HMD	UCF	HMD
Method	R@1	R@5	R@1	R@5	Top-1	Top-1	Top-1	Top-1
Centralised	29.00	47.30	11.80	30.10	86.20	57.00	48.14	30.65
FedAvg (Baseline)	32.62	50.41	16.54	35.29	79.91	52.88	45.31	31.44
FedVSSL(α=0, β=0)	34.34	51.71	15.82	36.01	79.91	52.94	47.95	31.12
FedVSSL(α =1, β =0)	34.23	52.21	16.73	38.30	79.14	51.11	47.90	29.48
FedVSSL(α=0, β=1)	35.61	52.18	16.93	37.78	79.43	51.90	47.66	30.00
FedVSSL($\alpha=1, \beta=1$)	35.66	52.34	16.41	36.93	78.99	51.18	48.93	31.44
FedVSSL(α=0.9, β=0)	35.50	54.27	16.27	37.25	80.62	53.14	50.36	32.68
FedVSSL(α=0,9, β=1)	35.34	52.34	16.93	37.39	79.41	51.50	50.30	32.42



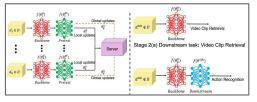




Case Study Speech Recognition

Case Study Carbon Footprint

Flower http://flower.dev



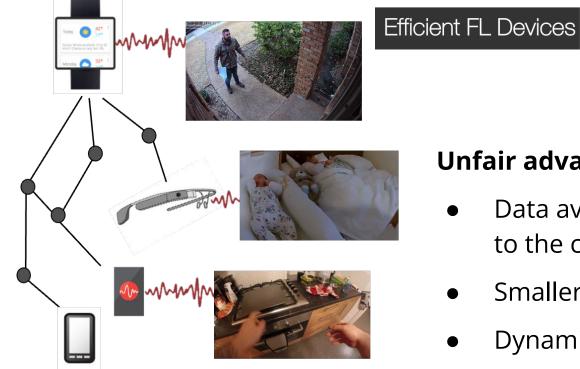
^{Case Study} Self-Supervised Learning

Prediction: 3 years from now self-learning starts to push us away from data centers

→ craft → watercraft → sailing vesse

Prediction: 3 years from now self-learning starts to push us away from data centers

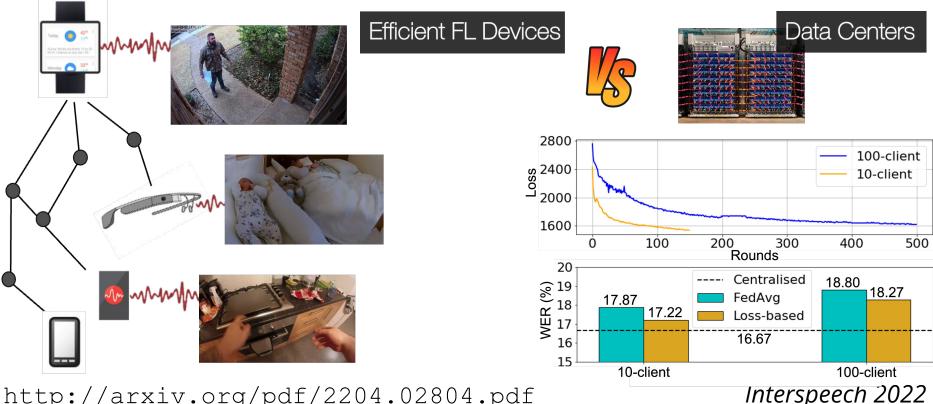
Data Centers



Unfair advantages of Federated SSL

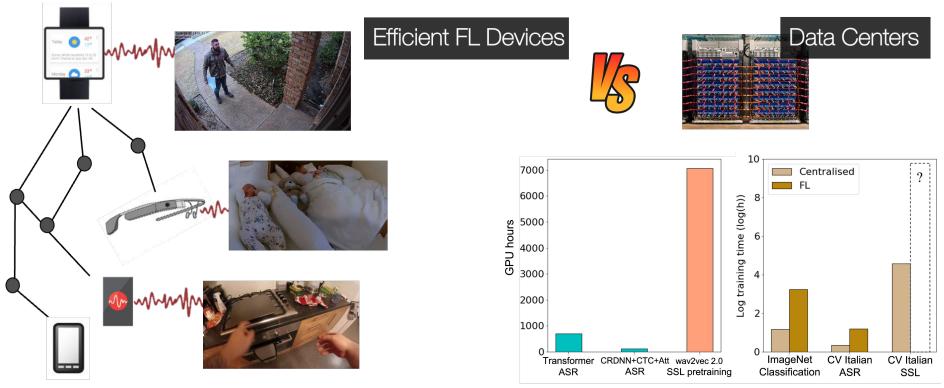
- Data avalanche unaffordable to send to the cloud
- Smaller Domain-shift
- Dynamic Open-world data

Prediction: 3 years from now self-learning starts to push us away from data centers



http://arxiv.org/pdf/2204.02804.pdf

Prediction: 3 years from now self-learning starts to push us away from data centers



http://arxiv.org/pdf/2204.02804.pdf

Interspeech 2022

Questions? Comments?

Flower http://flower.dev

Nicholas D. Lane

University of Cambridge | Flower Labs

@niclane7